®®®® SIIA Público

Título del libro: Proceedings Of The 11th Annual Genetic And Evolutionary Computation Conference, Gecco-2009
Título del capítulo: MOCEA: A multi-objective clustering evolutionary algorithm for inferring protein-protein functional interactions

Autores UNAM:
JUAN ENRIQUE MORETT SANCHEZ;
Autores externos:

Idioma:
Inglés
Año de publicación:
2009
Palabras clave:

Biological parameter; Biological significance; Clustering genetic algorithms; Computational experiment; Functional interaction; Genomic context; Genomic data; Multi objective; Multi-objective genetic algorithm; Multiple objective functions; Genes; Genetic algorithms; Multiobjective optimization; Proteins; Clustering algorithms


Resumen:

This paper explores the capabilities of multi-objective genetic algorithms to cluster genomic data. We used multiple objective functions not only to further expand the clustering abilities of the algorithm, but also to give more biological significance to the results. Particularly, we grouped a large set of proteins described by a set collection of genomic attributes to infer functional interactions among them. We conducted various computational experiments that demonstrated the proficiency of the proposed method when compared to algorithms that rely on a single biological parameter.


Entidades citadas de la UNAM: