ERROR:SQLSTATE[HY000]: General error: 20018 Invalid column name 'CodigoInstitucion'. [20018] (severity 16) [SELECT PublicObrasAutores.NumeroEmpleado, PublicObrasAutores.ApellidoPaterno, PublicObrasAutores.ApellidoMaterno, PublicObrasAutores.Nombre, PublicObrasAutores.NombreCompleto FROM PublicObrasAutores LEFT JOIN PublicObrasAutoresFil ON PublicObrasAutores.RefPublicacion = PublicObrasAutoresFil.RefPublicacion WHERE PublicObrasAutores.RefPublicacion = '683407' AND PublicObrasAutores.NumeroEmpleado IS NULL AND PublicObrasAutoresFil.CodigoInstitucion IS NOT NULL;]
®
ERROR:SQLSTATE[HY000]: General error: 20018 Invalid column name 'CodigoInstitucion'. [20018] (severity 16) [SELECT PublicObrasAutores.NumeroEmpleado, PublicObrasAutores.ApellidoPaterno, PublicObrasAutores.ApellidoMaterno, PublicObrasAutores.Nombre, PublicObrasAutores.NombreCompleto FROM PublicObrasAutores LEFT JOIN PublicObrasAutoresFil ON PublicObrasAutores.RefPublicacion = PublicObrasAutoresFil.RefPublicacion WHERE PublicObrasAutores.RefPublicacion = '683407' AND PublicObrasAutores.NumeroEmpleado IS NULL AND PublicObrasAutoresFil.CodigoInstitucion IS NULL;]
®
ERROR:SQLSTATE[HY000]: General error: 20018 Invalid column name 'Institucion'. [20018] (severity 16) [SELECT Institucion FROM PublicObrasAutoresFil WHERE RefPublicacion = '683407']
®
ERROR:SQLSTATE[HY000]: General error: 20018 Invalid column name 'Institucion'. [20018] (severity 16) [SELECT Institucion FROM PublicObrasAutoresFil WHERE RefPublicacion = 683407 AND InstitucionPropia = 'S'
UNION
SELECT Adscripciones.Entidad FROM PublicacionesObras
JOIN PublicObrasAutores ON PublicacionesObras.Identificador = PublicObrasAutores.RefPublicacion
JOIN Adscripciones ON PublicObrasAutores.NumeroEmpleado = Adscripciones.NumeroEmpleado
WHERE (PublicacionesObras.FechaPublicacion BETWEEN Adscripciones.FechaDesde AND Adscripciones.FechaHasta OR (PublicacionesObras.FechaPublicacion >= Adscripciones.FechaDesde AND Adscripciones.FechaHasta IS NULL)) AND PublicacionesObras.Identificador= 683407]
SIIA Público
SISTEMA INTEGRAL DE INFORMACIÓN ACADÉMICA - PÚBLICO
Título del libro: Compse 2016 - 1st Eai International Conference On Computer Science And Engineering Título del capítulo: Predictive modeling approaches for payroll issuers
Nowadays, in most banks, vast amounts of data are available in order to make business decisions and enhance the institution's know-how. The present study refers to transactional data systems used by companies that manage payroll outsourced services. We propose two practical approaches for analyzing this type information. One approach consists of testing traditional techniques for predictive modeling and, the other of building a credit score card using a credit scoring methodology. Several experiments were executed using specialized software in order to obtain the best credit score model for payroll issuers. Experimental results show that for most cases, decisions tree models are better than both logistic regression models and ensemble models. In one approach, we also show how the Quantile Grouping Method gives the lowest missclassication rate.