ERROR:SQLSTATE[HY000]: General error: 20018 Invalid column name 'CodigoInstitucion'. [20018] (severity 16) [SELECT PublicObrasAutores.NumeroEmpleado, PublicObrasAutores.ApellidoPaterno, PublicObrasAutores.ApellidoMaterno, PublicObrasAutores.Nombre, PublicObrasAutores.NombreCompleto FROM PublicObrasAutores LEFT JOIN PublicObrasAutoresFil ON PublicObrasAutores.RefPublicacion = PublicObrasAutoresFil.RefPublicacion WHERE PublicObrasAutores.RefPublicacion = '692543' AND PublicObrasAutores.NumeroEmpleado IS NULL AND PublicObrasAutoresFil.CodigoInstitucion IS NOT NULL;]
®
ERROR:SQLSTATE[HY000]: General error: 20018 Invalid column name 'CodigoInstitucion'. [20018] (severity 16) [SELECT PublicObrasAutores.NumeroEmpleado, PublicObrasAutores.ApellidoPaterno, PublicObrasAutores.ApellidoMaterno, PublicObrasAutores.Nombre, PublicObrasAutores.NombreCompleto FROM PublicObrasAutores LEFT JOIN PublicObrasAutoresFil ON PublicObrasAutores.RefPublicacion = PublicObrasAutoresFil.RefPublicacion WHERE PublicObrasAutores.RefPublicacion = '692543' AND PublicObrasAutores.NumeroEmpleado IS NULL AND PublicObrasAutoresFil.CodigoInstitucion IS NULL;]
®
ERROR:SQLSTATE[HY000]: General error: 20018 Invalid column name 'Institucion'. [20018] (severity 16) [SELECT Institucion FROM PublicObrasAutoresFil WHERE RefPublicacion = '692543']
®
ERROR:SQLSTATE[HY000]: General error: 20018 Invalid column name 'Institucion'. [20018] (severity 16) [SELECT Institucion FROM PublicObrasAutoresFil WHERE RefPublicacion = 692543 AND InstitucionPropia = 'S'
UNION
SELECT Adscripciones.Entidad FROM PublicacionesObras
JOIN PublicObrasAutores ON PublicacionesObras.Identificador = PublicObrasAutores.RefPublicacion
JOIN Adscripciones ON PublicObrasAutores.NumeroEmpleado = Adscripciones.NumeroEmpleado
WHERE (PublicacionesObras.FechaPublicacion BETWEEN Adscripciones.FechaDesde AND Adscripciones.FechaHasta OR (PublicacionesObras.FechaPublicacion >= Adscripciones.FechaDesde AND Adscripciones.FechaHasta IS NULL)) AND PublicacionesObras.Identificador= 692543]
SIIA Público
SISTEMA INTEGRAL DE INFORMACIÓN ACADÉMICA - PÚBLICO
Título del libro: Título del capítulo: A Framework for Efficient and Binary Clustering in High-Dimensional Space
Autores UNAM: ALEJANDRO HERNANDEZ CANO;
Autores externos: Idioma: Año de publicación: 2021Resumen:
Today's applications generate a large amount of data where the majority of the data are not associated with any labels. Clustering methods are the most commonly used algorithms for data analysis, especially in healthcare. However, running clustering algorithms on embedded devices is significantly slow as the computation involves a large amount of complex pairwise similarity measurements. In this paper, we proposed FebHD, an adaptive framework for efficient and fully binary clustering in high-dimensional space. Instead of using complex similarity metrics, e.g., Euclidean distance, FebHD introduces a nonlinear encoder to map data points into sparse high-dimensional space. FebHD encoder simplifies the similarity search, the most costly and frequent clustering operation, to Hamming distance, which can be accelerated in today's hardware. FebHD performs clustering by assigning each data point to a set of initialized centers. It then updates the centers adaptively based on: (i) data points assigned to each cluster, and (ii) the confidence of the model on the clustering prediction. This adaptive update enables FebHD to provide a high quality of clustering with very few learning iterations. We also propose an end-to-end hardware accelerator that parallelizes the entire FebHD computation by exploiting FPGA bit-level granularity. Our evaluation shows that FebHD provides comparable accuracy to state-of-the-art clustering algorithms, while providing 6.2x and 9.1x (4.7x and 5.8x) faster and higher energy efficiency when running on the same FPGA (GPU) platform.