®®®® SIIA Público

Título del libro: Icaart 2021 - Proceedings Of The 13th International Conference On Agents And Artificial Intelligence
Título del capítulo: Generating Reactive Robots' Behaviors using Genetic Algorithms

Autores UNAM:
JESUS SAVAGE CARMONA; STALIN MUÑOZ GUTIERREZ; LUIS ANGEL CONTRERAS TOLEDO; JOSE MAURICIO MATAMOROS DE MARIA Y CAMPOS; MARCO ANTONIO NEGRETE VILLANUEVA; OSCAR FRANCISCO FUENTES CASARRUBIAS;
Autores externos:

Idioma:

Año de publicación:
2021
Palabras clave:

Evolutionary Algorithms; Robot Behaviors; Finite State Machines; Hidden Markov Models


Resumen:

In this paper, we analize and benchmark three genetically-evolved reactive obstacle-avoidance behaviors for mobile robots. We buit these behaviors with an optimization process using genetic algorithms to find the one allowing a mobile robot to best reactively avoid obstacles while moving towards its destination. We compare three approaches, the first one is a standard method based on potential fields, the second one uses on finite state machines (FSM), and the last one relies on HMM-based probabilistic finite state machines (PFSM). We trained the behaviors in simulated environments to obtain the optimizated behaviors and compared them to show that the evolved FSM approach outperforms the other two techniques.


Entidades citadas de la UNAM: